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Abstract. Improving image quality is the backbone of highly competitive dis-
play industry. Contemporary video processing system design is a challenging
optimization problem. Generally, several video algorithms must be sequentially
applied to real-time video data. Overall image quality depends on the nonlinear
interactions between multiple design parameters: variable settings for each
module (algorithm), the amount of data being transferred in the video process-
ing chain as well as the order of the cascading modules. Unfortunately, no sys-
tematic techniques are currently available to configure the video chain without
lengthy trial and error process. We propose a rapid and reliable method for op-
timization of composite video processing systems based on genetic algorithm
coupled with local search heuristics. Video system configuration is evolved to-
ward the best image quality, driven by an objective video quality metric. We
analyze several local search approaches, including hill-climbing, simplex and
estimation-of-distribution algorithms. Experimental study demonstrates supe-
rior performance of memetic strategies over the conventional genetic algorithm.
We obtain novel and practical video chain solutions that are typically not at-
tainable by regular design process.

1   Introduction

Picture quality is a key factor influencing consumer brand name preference for video
communication devices [1, 25, 27]. These appliances range from small hand-held
devices to a large complicated television sets. They all deploy a number of video
processing modules, which interact together to create the desired output picture. Gen-
erally, video algorithms are developed and evaluated in isolation from the actual
video processing system, of which they will be a part in a consumer product. Obvi-
ously, the final quality depends on the interaction of the constituent algorithms. This
interaction depends on the order in which these modules are applied, as well as on the
settings of each algorithm’s programmable parameters. Whereas the development of
individual video processing algorithms (modules) involves a lot of analysis and
simulation, the development of larger chains often involves a more ad-hoc approach.
However, a thorough analysis of the inter-algorithm interaction is required in order to
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Fig. 1. An example of video chain configuration with four modules (algorithms).

find the optimal system architectural design and the best tuning of each individual
module’s parameters.

This challenge can be defined as a formal optimization problem called Video
Chain Optimization (VCO) [24]. A genetic algorithms approach has been proposed to
drive the optimization process [4, 7, 10, 24] and has proven to be successful in lead-
ing the search toward the global optima. However, this method is hindered by the
time it requires to converge to satisfactory design solutions. Simulation time on order
of days is usually necessary to reach the appropriate designs. This is mainly due to the
computational complexity of video algorithms and the need to simulate a large num-
ber of video systems before converging to (sub)optimal configurations and settings of
video chain.

This paper presents our approach for speeding up both the convergence rate and
the execution time of optimization. We speed up the convergence by augmenting
gray-coded genetic algorithm (GA) with a less complicated search method (local
search). Thus, we benefit from the GA’s ability to traverse the overall search space
without being trapped in local optima while converging faster using neighborhood
move operators. Furthermore, the execution speed is improved by keeping the sam-
ples visited over the search path in memory and using them for future search trials.

2   Background on Video System Design

The video-processing filter to be optimized consists of multiple video-processing
modules, which are considered essential for high-end and top-end television sets. We
deal primarily with video signals in the YUV and RGB domains, i.e. with image en-
hancement and display adaptation functions [9, 14]. Tuning, IF/color decoding, and
channel/source decoding are not considered for now. The functions used are lumi-
nance peaking by sharpness enhancement, spatial scaling, noise reduction and histo-
gram modification [9]. For example, Fig. 1 shows a particular video chain configura-
tion with these functions assigned to separate modules.

Sharpness enhancement, which nowadays is a common feature in TV sets, focuses
on improving the perceived sharpness of the luminance signal. Boosting the higher
frequencies in the luminance signal can enhance the sharpness. The noise reduction
unit reduces the higher frequency components based on measuring the presence of
noise. The scalers are implemented using polyphase FIR filters. The horizontal scal-
ers process each line of input video data and generate a horizontally scaled line of
output video data. In the case of expansion, this is done by up-sampling that is per
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Fig. 2. A general structure for the chromosome representing a video processing chain

formed either by a polyphase filter for which the horizontal expansion factor deter-
mines the filter phases required to generate each output pixel, or by a filter that uses
this factor to interpolate the output pixels from the input pixels. In the case of com-
pression, a transposed polyphase filter is used to down-sample the input data, and the
horizontal compression factor determines the required filter phases. The vertical scal-
ers, however, generate a different number of output video lines than were input to the
module, with input and output lines having the same numbers of pixels. Vertical scal-
ers may either compress or expand the number of output video lines. Histogram
modification stretches out the luminance value for the black color and the white color
to better represent the color contents of the video sequence.

3   Applying Genetic Algorithms to the Video Chain Design

The optimization process utilizes genetic algorithms (GA) to search for the parameter
settings, implementation alternatives and an interconnection scheme delivering the
best objective picture quality. In optimizing the video-processing scheme, a chromo-
some defines a certain way in which different video processing modules are con-
nected and video stream is transformed. A chromosome consists of a number of
genes.  The genes in the video optimization problem encode the parameters of video
processing functions as well as the order of modules, which determines the connec-
tion scheme.  Fig. 2 shows a general structure of the string (chromosome) encoding a
video processing chain with n functions.
We optimized a video processing system, which consisted of four cascaded video
processing modules, namely, a spatial poly-phase scalar, a noise reducer, a sharpness
enhancer and a histogram modification module.  The optimization algorithm deals
with each module as generically as possible.  It assumes no prior information about
the modules nor the connectivity constraints on the cascaded modules.  The search
process seeks not only the optimal values of pre-defined set of parameters within each
module, but also the data bus parameters.  The data precision (number of bits in a data
bus, i.e., bus width) between two cascaded modules is considered a parameter to be
optimized. We elected to use this set of video processing modules because of their
vital role in any video system [9, 23]. Moreover, some of these modules are compet-
ing modules [9, 14], e.g., increasing the sharpness would enhance the perceived ex-
isting noise and reducing the noise will blur the picture resulting in the loss of ap-
pealing crispiness.

The complete optimization scheme consists of three main components: (i) model
of the video processing system, (ii) the objective image quality measurement compo-
nent, and (iii) the search procedure with genetic algorithm in its core. It must be noted
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Fig. 3. A schematic diagram for optimizing a video system

Fig. 4. The chromosome encoding for a constraint-free video chain

that the video system is entirely modeled in software. However, the obtained design
solutions are easily transferred to the ultimate display product based on specialized
hardware.

The computational bottleneck in this scheme results from the simulation complex-
ity of the video processing system. We run a number of video processing systems in
parallel (depending on the available computation processors on a parallel computer),
as well as a number of the objective image quality metric components. Parallelizing
the computationally demanding portions of the system significantly improves the
performance. Fig. 3 shows a schematic diagram of the overall system.
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3.1   A Scalable Random Order Video Processing System

The primary goal of this study is the optimization of scalable random order video
system. In particular, we consider the video-processing filter without any prior con-
straints on the modules’ parameters, order and the data bus width.  The noise reduc-
tion unit has a smearing effect, which can be controlled by four settings: 1, 2, 3 or 4,
thus 2 bits are needed to represent it. The sharpness enhancement has a parameter
with five settings (3 bits). The number of bits transferred between any two cascaded
video processing units could range between 8 and 12 bits (5 settings; 3 bits are
needed for encoding).  There are 24 possible ways of cascading 4 video-processing
modules, and 5 bits are needed to represent it. Thus, the chromosome needed to rep-
resent this video-processing filter comprises 19 bits. The video filter has 60,000 pos-
sible variations. Fig. 4 shows the chromosome structure in this case.

4   Objective Image Quality Metrics as Fitness Function

Evaluation of video quality has always been achieved using subjective methods [1,
11]. Since the subjective results vary according to the variability between the viewing
audiences, subjective results, which are solely based on perception, have to be statis-
tically post-processed in order to remove the ambiguity resulting from the non-
deterministic nature of these results. Linear and nonlinear heuristic statistical models
[21] have been proposed to normalize these results, and produce certain figures of
merit to represent the goodness/degradation of the video quality. However, relying on
human evaluation is expensive and sometimes impossible to adopt. Apparently, a
subjective evaluation cannot be used within the optimization loop, when tens of thou-
sands of trials are performed. Hence, automatic methods to evaluate video quality are
necessary.

Ideal automatic and objective assessment of video quality should highly correlate
with subjective testing [5, 25]: the higher the correlation, the better the objective
method is. In practice, different methods are investigated for objective image quality.
They vary widely in complexity and performance and can be categorized in several
ways, measuring traditional analog vs. digital artifacts, measuring the general per-
ceptual quality of a video sequence vs. measuring a specific artifact only, and finally
still image (frame/field) evaluation vs. temporal evaluation.  For instance, nine pro-
ponent models were proposed to the Video Quality Expert Group (VQEG) [25].

We employ a composite scalable objective metric, which consists of a set of met-
rics, each of which is geared toward measuring a certain feature of the video se-
quence. Each of these n metrics gives a reading, fi, (1 ≤ i ≤ n), which measures a cer-
tain feature of the video sequence I. These readings are weighted by a weight factor
each, wi (1 ≤ i ≤ n) and linearly combined:

1

( )
n

i i
i

F w f I
=

=∑    (1)
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Of course, the set of weights {wi} must be determined in advance. Weights are found
by maximizing the correlation factor R between human perceptual evaluation and the
composite objective measure F on the baseline training data. In particular, we maxi-
mized Spearman rank order [21] that measures the correlation factor RS between the
subjective evaluations Xr and the objective metrics Yr = F(Ir) over a number of train-
ing video samples {Ir}:

1
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A more detailed explanation and illustration of the objective image quality metric and
its constituent metrics is given in [24].

5   Memetic Optimization Approach

The problem we are trying to solve, video chain optimization, has a distinctive set of
features. Studying the nature of these features is the best way to decide on the most
suitable optimization method to adopt. VCO problem is computationally expensive,
since it deals with video processing, has a highly nonlinear, non-differentiable cost
function, and is strongly constrained, (e.g., the admissible range of any parameter),
and finally, it can be parallelized.

For several decades it has been well understood that competitive optimization
methods should include both global and local search as a tradeoff between explora-
tion and exploitation of search space. The evolutionary search is no exception. In-
deed, evolutionary search proved to be efficient in exploration of large solution
spaces. Genetic algorithms deserve special attention since they are known to be robust
across the wide spectrum of optimization problems [8] including real world applica-
tions. However, genetic algorithms are not particularly successful in fine-tuning of
the candidate solutions. GAs can quickly identify promising search areas. Implicitly
operating with many relatively short building blocks, a GA quickly converges toward
better solutions. But if only a few bits are not correctly set in the chromosome, it may
be very difficult for a GA to find them. An extra search is often necessary for the
fine-tuning of the solutions. For solutions that are time-critical, proper local search
component plays important role.

Though many hybrid optimization techniques are in use with or without GA play-
ing a part in a search, we focus on the genetic algorithm and local search (LS) combi-
nation. Several names are applied to this combination. It is known as particular case
of metaheuristic algorithms [28], Lamarckian evolution, Baldwin effect [26], genetic
local search [22], or more recently as memetic algorithms [19]. Actual problem dic-
tates the choice of local search component. Many successful applications utilized hill-
climbing [16], gradient-descent [15] and Nelder-Mead's Simplex [20]. Extra local
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search usually exploits the best solutions within population and moves to new points
via small modification of the old solutions. Thus, exploitation of the existing infor-
mation is achieved by local search in the vicinity of the best solutions. Certainly, the
definition of the small moves depends on the metric imposed upon the search space
and corresponding encoding of solutions. Typically, an elementary move causes
minimal change in the solution under some distance definition. For example, choice
of Hamming distance between solutions in binary representation naturally induces a
bit flip as elementary modification. The immediate neighborhood of a point consists
of all points reachable via a single bit flip. With different representation of solutions
neighborhoods may radically differ.

In order to improve optimization speed, a knowledge-based search strategy can be
used. Since no prior information on the search space is available, we extract this in-
formation from the GA population. Thus, it is important to decide on how to combine
GA with local search. There are many ways to achieve this. First, we have to decide
on whether the local search interleaves with evolutionary operators during a regular
GA run or if that happens only at the end of a GA run as a form of fine-tuning. Tak-
ing into account that GA rather quickly provides good indications for best global
regions in the search space, it is reasonable to allow limited amount of search in the
vicinity of the current best solutions during the GA run.

It is also important to decide if the changes due to the local search are coded back
to the chromosome or not, that essentially is the choice between Lamarckian and
Baldwin type of evolution [26]. In Lamarckian evolution, learning (via local search)
affects fitness distribution as well as the underlying genotype, while the Baldwin
effect is mediated via the fitness values only. In our case, the question is whether
locally learned values are copied back into the genotype (Lamarckian) or whether the
chromosome remains unmodified while the individual’s fitness is changed by local
search (Baldwin).

Even though there are indications that Lamarckian and Baldwin evolution demon-
strate comparable performance in some circumstances [26], our approach is to allow
modified genetic code to be written back to the chromosome, thus following La-
marckian style, which proves to better improve the GA solution. Below we will dis-
cuss three different implementations of hybrid GA used in our experimental study.

5.1   Next-Ascent Stochastic Hill Climbing

This type of hill climbing makes a change in a random gene. If this change results in
better or equal fitness value, then a new solution is accepted. It differs from steepest
ascent since we do not exhaustively search through the neighborhood for the best
improvement, but rather accept any improvement. The accepted solution becomes a
member of the current population at this moment. In a parallel implementation, sev-
eral current best solutions are subjected to hill-climbing modifications simultane-
ously.
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5.2   Simplex Method

The Nelder-Mead’s simplex algorithm [13] uses a geometric figure consisting of d+1
points in d dimensions. In this method, a new simplex is created from an old simplex
by replacing the worst evaluation point with a new point. The previous worst point is
reflected over the mean vector c of d best points to create a new point:

)...(
1

1 dd
xxc ++= (4)

 new  worst= + −x c c x (5)

The new point is evaluated, and simplex transformation continues as before. In or-
der to create every new point, d+1 points are drawn at random from the current
population. Many modifications to this basic procedure are known. The most popular
approach [13] uses adaptive expansion and contraction of the simplex depending on
the objective function value of a new point. A variant of Nelder-Mead’s simplex was
also used in hybrid GAs  [20, 29, 3]. Our GA-Simplex hybrid iterates GA with lim-
ited amount of simplex search every generation.

5.3   Local Search Directed by Estimation Distribution Algorithm

Any knowledge about the problem is potentially valuable because it allows us to bias
the search toward more promising solutions. Often this knowledge is gained only
during the optimization itself. Therefore, it is important to control the search on the
fly by the information that is explicitly accumulated with the experience. Explicit
search statistics [2] can be used to shape this information and make it useful for gen-
erating new solutions. A whole family of such algorithms relies on learning the prob-
ability distributions among the best solutions [17]. New points are sampled from such
a distribution, evaluated, and used to refine the distribution, in turn. These methods
are known as estimation of distribution algorithms (EDA) or probabilistic modeling
and can be used instead of GA for all optimization purposes. In our approach we do
not abandon GA as an exploration tool, but use explicit probability distributions for
the local search only. Though many models are suitable for capturing the distribution,
we use the simplest and most inexpensive one: marginal distribution of individual
alleles. This distribution is simply summarized by the vector of probabilities of alleles
at every locus Pgood={Pgood(x1), Pgood(x2),…, Pgood(xn)} assuming that alleles are inde-
pendent. It approximates the full joint probability distribution of the alleles of the best
solutions as the product of unconditional probabilities of individual alleles:

P (x1, x2,…, xn) = Pgood(x1) Pgood(x2) …Pgood(xn) (6)

With binary coding, the components of vector Pgood contain the probabilities of 1’s at
the corresponding genes. This distribution is used to guide the local search. Every
candidate solution subjected to the local search is modified by the distribution Pgood.
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In contrast to other EDA-type algorithms, we blend the distribution with the candi-
date individual. Thus, instead of drawing completely new individuals only from the
distribution Pgood, the candidate solution is modified by the information on good solu-
tions available at the current generation. The modified individual is sampled from the
distribution Q(x1, x2,…, xn):

Q(x1, x2,…, xn) = 1 good 1 2 good 2 good( ) ( ) ( )
, ,...,

2 2 2
n nx P x x P x x P x+ + + 

 
 

(7)

Sampling from the distribution Q produces new solutions closer to the old solution in
comparison with simply drawing from the distribution Pgood. This is more adequate to
our goal of making just slight modifications in the vicinity of the old solutions. Un-
like mutations, EDA-based modifications are not uniformly random, but rather di-
rected by the currently known distribution of the good solutions. In general, one can
apply unequal weights to the shares of probabilities coming from x and from Pgood:

Q = λx + (1-λ)Pgood (8)

In addition, we need to take care that the information in Pgood is properly updated
every generation. In our implementation, only solutions whose fitness value exceeds
the mean population fitness contribute to Pgood. Distribution of good solutions from the
current population is summarized in Pcurr.good at each generation and is used to update
the distribution Pgood estimated from the previous generations:

Pgood (t) = αPgood (t-1) + (1-α)Pcurr.good (9)

By altering the factor 0<α<1 we can reduce the contribution of the previous distribu-
tion and introduce new information updating Pgood incrementally, from generation to
generation.

6   Empirical Study

A real video chain described in section 3.1 was optimized in the experiments. The GA
package dCHC by Eshelman [6] served as a basis for all hybrid algorithms. We have
studied the performance of three different combinations of a genetic algorithm with
local search procedures, and compared them to the pure GA solution obtained by
dCHC algorithm. The following memetic algorithms were implemented:

1. GA + simplex local search
2. GA + next-ascent stochastic hill-climbing
3. GA + EDA-based local search

The dCHC algorithm was used as the baseline genetic algorithm. Both half uniform
(HUX) and 2-point crossover were employed for genetic recombination [6]. Other
typical features of dCHC include cross-generation selection, maintaining diversity
and soft restart. All the experiments were conducted with population size 50. Variable
amounts of 10-20 modifications by local search were performed on the best individu-
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Fig. 5. The best solution found after a set of trials for different memetic heuristics

Fig. 6. A typical improvement provided by local search in hybrid GA+EDA algorithm.

als every generation. The number of modifications depends on the number of off
spring produced, which varies from generation to generation due to incest prevention
mechanism [6]. Since we evaluate the children in parallel, some processors may be
free and therefore can be used to run extra evaluations issued by the local search. On
average, the relative effort by the local search was lower in the beginning of the run
and higher before the convergence, since the number of new children produced by
dCHC in every generation is smaller as the population converges. A video chain con-
figuration was represented by a chromosome, which has 6 different genes and 19 total
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bits. A high quality solution for this problem was known in advance as found by
multiple runs of pure GA, each run taking several days to complete. All the trials,
including local search, were done in parallel in batches of 10 evaluations (number of
used parallel processors = 10). Two types of information were of particular impor-
tance: the average number of trials to reach the best solution and the dependence of
the current best performance on the number of evaluations.

Fig.5 shows the objective function value (image metric) of the best solution as a
function of the number of trials (objective function evaluations) averaged over 20
different runs. The total count of trials includes both GA trials as well as local search
trials. The main observation is that all the hybrid algorithms performed better than the
original genetic algorithm. All hybrid algorithms operated with strings in Gray coding
representation for the parameters of the video chain. A minor difference in favor of
the Gray representation was found in the experiments. The sample VCO problem was
solved fastest by the hybrid algorithm with the local search guided by the estimation
distribution algorithm. The least improvement was achieved by the GA + simplex
hybrid algorithm.

As seen from the Fig. 5, hybrid GAs have converged faster than the pure GA. This
is simply because of the local search’s better ability to fine-tune the solution faster
than a population-driven (like GAs) search method. Fig. 6 shows a typical improve-
ment achieved by introducing local search to pure GAs.

Table 1 summarizes trial statistics to reach the known global optima optimal solu-
tion for the video chain optimization problem using different combinations of GA
with local search procedures. We report the average and the standard error of the
number of trials needed to reach the best solution.

Table 1. Average number of trials necessary to reach the best known VCO solution for differ-
ent hybrid algorithms, averaged over 30 runs each.

Algorithm Average Std. Err.

GA + EDA 268 21

GA + Hill-climbing 336 48

GA + Simplex 481 40

GA 635 141

6.1   Improving Execution Time by Solution Caching

Since the most time consuming process is applying the objective image quality met-
ric, we can use a fast retrieval memory mechanism (e.g., a hash table) to store each
evaluated chromosome (video system) together with its associated image quality
value. Utilizing the memory unit prevents many costly evaluations, which would
otherwise unnecessarily slow down the optimization process. Without caching the
evaluated configurations, we may need to re-evaluate a chromosome if redundant
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Fig. 7. Optimization speed-up due to candidate solutions caching.

encoding results in two different bit representations of the same physical solution
configuration (over-mapping) or when population close to convergence.

In general, if a GA needs to find the fitness (the image quality) of N video designs,
out of which only M are not tested before, then we expect to get a gain in computa-
tion time:

( ) eval look up updateT N M T N T M T−∆ = − − ⋅ − ⋅ (10)

Here evalT  is the time of a single evaluation, uplookT −  and updateT  are the times re-

quired for finding a record in memory and for writing a record, respectively. The gain
is positive if

look up update
eval

N T M T
T

N M
−⋅ + ⋅

>
−

(11)

This is obviously the case when dealing with video systems, where the evaluation
time may extend to 6-10 minutes, while the look-up and update time is of the order of
nanoseconds. Our implementation of this memory is based on a classical linked list
hash. Hash memory has reasonable space requirements for keeping all the visited
solutions and their values. Figure 7 shows the actual speed-up of GA variants with
solution caching.

7   Conclusion

We presented a method for automatically optimizing a complicated real-world video
processing system, without prior information about the constituent video processing
components. Using an automatic optimization method necessitates the use of a cost
function, which evaluates the perceptual image quality automatically. We introduced
a method to combine a number of image quality metrics to maximize the correlation
between the perceived quality and the measured objective quality.
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We described several approaches to speed up the execution time needed for find-
ing the (sub) optimal solution in a GA driven optimization problem. The solution
quality was improved by hybridizing GA with different local search methods, while
the run time has been reduced by using memory hash table of previously visited sam-
ple points. Several implementations of memetic algorithms have been presented and
their performances have been illustrated.

Memetic optimization allows us to keep the versatility provided by GA while
speeding up the rate of convergence toward the global optima. In addition, memory-
supported GA proves to be very useful, as it avoids re-calculating the objective func-
tion especially toward the final convergence.
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